Search results for "Residual dipolar coupling"
showing 3 items of 3 documents
Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance
2015
Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile…
Protein structure prediction assisted with sparse NMR data in CASP13
2019
CASP13 has investigated the impact of sparse NMR data on the accuracy of protein structure prediction. NOESY and 15 N-1 H residual dipolar coupling data, typical of that obtained for 15 N,13 C-enriched, perdeuterated proteins up to about 40 kDa, were simulated for 11 CASP13 targets ranging in size from 80 to 326 residues. For several targets, two prediction groups generated models that are more accurate than those produced using baseline methods. Real NMR data collected for a de novo designed protein were also provided to predictors, including one data set in which only backbone resonance assignments were available. Some NMR-assisted prediction groups also did very well with these data. CAS…
Simple modeling of dipolar coupled 7Li spins and stimulated-echo spectroscopy of single-crystalline β-eucryptite
2004
Abstract Stimulated-echo spectroscopy has recently been applied to study the ultra-slow dynamics of nuclear spin-3/2 probes such as 7 Li and 9 Be in solids. Apart from the dominant first-order quadrupolar interaction in the present article also the impact of the homonuclear dipolar interactions is considered in a simple way: the time evolution of a dipole coupled pair of spins with I =3/2 is calculated in an approximation, which takes into account that the satellite transitions usually do not overlap. Explicit analytical expressions describing various aspects of a coupled quadrupolar pair subjected to a Jeener–Broekaert pulse sequence are derived. Extensions to larger spin systems are also …